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started slowing down. While weighting considerably moder-
ates and sharpens our projections, our results are at low end 
of previously published estimates. We project mean AMOC 
changes between periods 1960–1999 and 2060–2099 of 
−4.0 Sv and −6.8 Sv for RCP4.5 and RCP8.5 emissions 
scenarios respectively. The corresponding average 90% cred-
ible intervals for our weighted experiments are [−7.2, −1.2] 
and [−10.5, −3.7] Sv respectively for the two scenarios.

Keywords  Atlantic Meridional Overturning Circulation · 
Climate modeling · Bayesian Model Averaging · Model 
structural error · Probabilistic projections

1  Introduction

Atlantic Meridional Overturning Circulation (AMOC) con-
sists of a northward-flowing shallow current, and a south-
ward return flow at depth. AMOC is thought to be influenced 
by vertical surface fluxes of heat and freshwater, by the 
Southern Ocean winds which drive deep upwelling there, as 
well as by vertical mixing (Kuhlbrodt et al. 2007; Kim and 
An 2013; Yeager and Danabasoglu 2014). The AMOC car-
ries large amounts of heat northward (Buckley and Marshall 
2016), which is thought to have a warming effect throughout 
the Northern Hemisphere, and in particular over the Arctic, 
the North Atlantic and Northwestern Europe (Manabe and 
Stouffer 1993; Broecker 1997; Vellinga and Wood 2002; 
Alley 2007; Kuhlbrodt et al. 2007). Moreover, AMOC is a 
key process for redistributing heat and carbon into the deep 
ocean (Stocker and Schmittner 1997; Buckley and Marshall 
2016).

While potential future AMOC changes (Manabe and 
Stouffer 1993; Stocker and Schmittner 1997; Kim and An 
2013) cannot “exceed the fertile imaginations of Hollywood 
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writers” (Alley 2007), they can affect global temperatures, 
the North Atlantic CO2 sink and sea level, the Atlantic rain-
fall, marine ecosystems and storm tracks, the Intertropical 
Convergence Zone (ITCZ), the land biogeochemistry, the 
Indian and Asian summer monsoons, and the El Niño-South-
ern Oscillation (ENSO) (Vellinga and Wood 2002; Stouffer 
et al. 2006; Alley 2007; Kuhlbrodt et al. 2007; Timmermann 
et al. 2007; Srokosz et al. 2012; Kim and An 2013; Stone 
et al. 2016; Buckley and Marshall 2016).

AMOC projections are uncertain (Stocker and Schmittner 
1997; Schmittner et  al. 2005; Goes et  al. 2010; Urban 
and Keller 2010; Weaver et al. 2012; Chang et al. 2014; 
Schleussner et al. 2014; Reintges et al. 2016; Bakker et al. 
2016). This uncertainty stems from several sources: the forc-
ing uncertainty by greenhouse and other radiatively active 
gases, climate model uncertainty (including structural and 
parametric uncertainty), and internal climate variability. 
The model uncertainty is thought to play by far a dominant 
role (Reintges et al. 2016), which suggests that differentially 
weighing models by their skill at representing present-day 
observations has a strong potential to narrow the range of 
future projections.

Several previous attempts have been made to provide 
probabilistic AMOC projections using parsimonious cli-
mate models. Schmittner et al. (2005) derive weights for 
nine Global Climate Model (GCMs) runs from the Cou-
pled Model Intercomparison Project phase 3 (CMIP3) 
multi-model dataset, based on their skill at represent-
ing global fields, North Atlantic sea surface tempera-
ture (SST), salinity (SSS), pycnocline depth, as well as 
measures of the overturning itself. They then construct 
a weighted mean AMOC projection for the year 2100. 
While an improvement on previous work, the study uses 
an old set of GCMs, does not provide probability distribu-
tion functions, and the weighing method is not based on 
established statistical theory. Goes et al. (2010) estimate 
two ocean parameters of the University of Victoria Earth 
System Climate Model (UVic ESCM) in the context of 
a multi-parameter ensemble, and use these estimates to 
provide future AMOC projections. Model likelihoods are 
based on model skill at representing global average tracer 
depth profiles, and account for cross-correlation of model 
errors between the tracers. The main improvement of that 
work is usage of well-established Bayesian statistical the-
ory, which makes it possible to obtain probability distribu-
tion functions. Bhat et al. (2012) improve on Goes et al. 
(2010) by using 2D (lat × depth) fields of Δ14C and CFC11 
to constrain vertical diffusivity in UVic ESCM and to pro-
vide AMOC projections. They use a flexible hierarchical 
model to connect the two tracers, leverage kernel mixing 
to reduce the dimensionality of the data, and employ a 
Gaussian Process emulator to estimate model output at an 
arbitrary location and vertical ocean diffusivity setting. 

Chang et al. (2014) increase the dimensionality of obser-
vational constraints to 3D (lat × lon × depth), using poten-
tial temperatures in the North Atlantic to constrain vertical 
diffusivity in UVic ESCM. This is made possible through 
an advanced data reduction technique consisting of princi-
pal component decomposition and kernel mixing.

Schleussner et  al. (2014) take a different approach. 
They fit linear response functions to AMOC output of 
several models from the fifth phase of Coupled Model 
Intercomparison Project (CMIP5). These simple linear 
response models are then integrated into the future under 
a large number of potential temperature change scenarios. 
Consequently, this work now incorporates both forcing 
uncertainties, as well as model structural and parametric 
uncertainties.

Recently, Bakker et al. (2016) have used the results from 
the AMOCMIP project, that uses 21 simulations from eight 
models to make probabilistic AMOC projections. The model 
runs include a temporary and spatially varying Greenland 
Ice Sheet (GIS) melt water forcing, as well as spatially var-
ying iceberg discharge. The runs are complemented by a 
physically-based AMOC emulator. The probabilistic pro-
jections, based on this emulator, sample several relevant 
climate uncertainties, as well as the emulator error.

These studies break important new ground but they still 
suffer from a series of drawbacks. First, none of these stud-
ies fully incorporate uncertainty due to model internal vari-
ability in the projection stage. Second, no drift-correction 
is performed on AMOC output. Furthermore, they do not 
weight the models by their skill at representing temporal 
North Atlantic dynamics. Moreover, they typically do not 
fully account for model errors during the prediction stage. 
Specifically, AMOC projections from the models are usually 
taken at face value, without incorporating additional model 
error. Finally, no cross-validation is performed on the projec-
tions to confirm that the credible/confidence intervals have 
well-calibrated bounds.

We improve on previous probabilistic projections by (a) 
considering the largest to-date subset of the CMIP5 climate 
models, (b) weighting the models by their skill at represent-
ing present day AMOC, and its century scale trends as esti-
mated by the AMOC Index, (c) cross-validating the projec-
tions, (d) fully incorporating model/observational error that 
provides correct coverage during the cross-validation experi-
ments and (e) drift-correcting all variables using preindus-
trial control simulations. The rest of this paper is organized 
as follows: Sect. 2 describes the climate models, the obser-
vations used to weight them, the Bayesian Model Averaging 
procedure for making weighted projections, together with 
the cross-validation experiments to validate the methodol-
ogy; Sect. 3 presents model weights and weighted AMOC 
projections, while Sect. 4 discusses the caveats. Finally, con-
clusions are provided in Sect. 5.
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2 � Data and methods

The method we use to obtain weighted probabilistic projec-
tions, Bayesian Model Averaging, requires a consistent set 
of model outputs, prior probabilities for these models, and 
observations to compare to the models and to weight them. 
Here we use a subset of CMIP5 models which we weight 
by their skill at modeling the AMOC Index—a temperature 
based AMOC proxy adapted from Rahmstorf et al. (2015). 
The priors for the models are based on their ability to repro-
duce the AMOC during years 1957–2004 (Kanzow et al. 
2010). The following subsections describe our methodology 
in more detail.

2.1 � Climate model output

2.1.1 � CMIP5 models

We use 13 CMIP5 models that have pre-calculated AMOC 
streamfunctions (Table 1). For all models the first ensem-
ble member is used. Our model choice is motivated by the 
availability of the outputs (particularly for the pre-calculated 
streamfunctions). Even though there are many other models 
that output velocity fields from which streamfunctions can 
be derived, similarly to previous work (Weaver et al. 2012), 
we do not use such models. This is because we find that the 
streamfunction obtained from these fields is highly sensitive 
to interpolation parameters, and ignores subgrid-scale/eddy 
transports.

2.1.2 � AMOC Index

There is no consistent long-term record of AMOC strength 
over the past 100 or more years. However, such a long 

record is highly desirable for statistically sound Bayesian 
techniques. Hence, here we use an AMOC Index—a proxy 
of long-term AMOC strength trends which is based on tem-
peratures in the North Atlantic region south of Greenland, 
in a slightly modified form from Rahmstorf et al. (2015).

There are a couple of mechanisms linking temperatures in 
northern North Atlantic to AMOC strength. First, a reduced 
AMOC would lead to less northward ocean heat transport 
by the North Atlantic current into northern North Atlantic, 
which is expected to cool that area (Alley 2007; Kim and An 
2013). Second, northern North Atlantic temperatures can, in 
their turn, also affect the AMOC through their influence on 
the buoyancy forcing (Yeager and Danabasoglu 2014; Buck-
ley and Marshall 2016), although previous work has focused 
on region to the west of the one discussed here (Yeager and 
Danabasoglu 2014).

These relationships have been explored in a number of 
studies. Stouffer et al. (2006) have subjected CMIP3 GCMs 
to a 0.1 Sv North Atlantic freshwater hosing experiment. 
In response to the resulting AMOC slowdown, the models 
showed a consistent cooling south of Greenland, which was 
strongly linearly related to the slowdown. AMOC strength-
ening has preceded the recently increased subpolar SSTs in 
a historically forced coupled GCM run (Yeager and Dana-
basoglu 2014). Drijfhout et al. (2012) and Rahmstorf et al. 
(2015) analyze observations and climate models to find 
that the region of conspicuous warming hole in the North 
Atlantic south of Greenland is associated with the AMOC 
decline throughout the last century. Furthermore Rahmstorf 
et al. (2015) find a very strong positive correlation (r = 0.9) 
between smoothed and detrended AMOC Index and AMOC 
in a state-of-the-art GCM with a realistic representation of 
the AMOC, which motivates them to use this index as a 
proxy for past AMOC Index reconstructions. As will be 

Table 1   Information about the 
CMIP5 models used

Model number Model name Institution/country

1 ACCESS1.0 CSIRO and BOM/Australia
2 ACCESS1.3 CSIRO and BOM/Australia
3 CanESM2 Canadian Centre for Climate Modelling and Analysis/Canada
4 CCSM4 National Center for Atmospheric Research/USA
5 CESM1-BGC National Science Foundation, Department of Energy, 

National Center for Atmospheric Research/USA
6 CESM1-CAM5 National Science Foundation, Department of Energy, 

National Center for Atmospheric Research/USA
7 GFDL-ESM2M Geophysical Fluid Dynamics Laboratory/USA
8 INM-CM4 Institute for Numerical Mathematics/Russia
9 MPI-ESM-MR Max Planck Institute for Meteorology (MPI-M)/Germany
10 MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M)/Germany
11 MRI-CGCM3 Meteorological Research Institute/Japan
12 NorESM1-M Norwegian Climate Centre/Norway
13 NorESM1-ME Norwegian Climate Centre/Norway
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shown here, we find a moderate positive correlation between 
century-long changes in AMOC and the AMOC Index over 
the last century in the 13 CMIP5 models we use (Sect. 3.1). 
Significant North Atlantic cooling (up to 8 °C) in response 
to an AMOC collapse has also been reported by Vellinga 
and Wood (2002). Other work has shown that decreased 
meridional heat transport by the AMOC moderated subarc-
tic North Atlantic warming in CMIP3 CO2 doubling experi-
ments (Kim and An 2013).

Here we use the AMOC Index in a slightly modified 
form to the one presented in Rahmstorf et al. (2015). As in 
Rahmstorf et al. (2015), the AMOC Index is the difference 
between mean SST in the “gyre” region south of Greenland 
and the mean Northern Hemispheric surface air tempera-
ture, however the gyre region is different. It is now the area 
between 40° and 80°N, and between 80° and 0°W, where 
the recent century-scale observed SST trends in ERSSTv4 
observations (Huang et al. 2014; Liu et al. 2014) are consist-
ently negative (Fig. 1). Specifically, the trends are obtained 

from start years ranging from 1880 to 1900, and the end year 
of 2015; and the mean linear trend is calculated for each grid 
cell. Earlier periods are not included due to the sparseness 
of the observations (NOAA 2017). The grid cells that show 
a negative mean trend are assigned to the “gyre” region. 
The annual AMOC Index anomalies are calculated for years 
1880–2004. Prior to the calculation, modeled output is bilin-
early interpolated to the 2 × 2° lat/lon grid of the ERSSTv4 
SST observations, and area-averaging is used for both gyre 
and Northern Hemispheric temperatures.

The AMOC Index is drift-corrected using information 
from preindustrial control runs. First, the branch time of the 
control runs is matched to the historical runs using informa-
tion from CMIP5 errata table publicly provided by Gregory 
(2012). For National Center for Climate Research (NCAR) 
models (e.g., CCSM4, CESM1-BGC and CESM1-CAM5) 
this errata is out of date, and correct branch times are instead 
given by the NCAR errata page (NCAR 2017). For GFDL-
ESM2M, branch time information is retrieved directly from 

Fig. 1   Mean linear temperature trend for periods starting in 1880 through 1900 and ending in 2015 based on ERSSTv4 observations. The sub-
polar gyre is also shown
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GFDL FAQ (Sentman 2016). For CESM1-CAM5, the con-
trol run ends in year 1944 and thus does not cover global 
warming simulations in full. We detect no considerable trend 
in the control run. Thus, no drift is assumed for this model. 
For other models, a quadratic fit is applied to the 1850–2100 
control simulations and then subtracted from historical sim-
ulations. We note that considerable drifts have been found in 
two models (not shown).

The drift-corrected AMOC Index from the 13 GCMs, 
smoothed using robust locally weighted regression (Cleve-
land 1979) and demeaned (e.g., bias-corrected to have a zero 
mean over years 1880–2004), is shown in Fig. 2.

2.1.3 � AMOC

Modelled annual-mean AMOC strength is extracted for years 
1880–2004, and 2060–2099. If the northward overturning 
streamfunction has been pre-calculated, it is used. Otherwise, 
if just the Y-overturning meridional streamfunction (on the 
model’s native grid) is available, it is used, as long as the 
model’s grid is deemed to be sufficiently similar to a latitude-
longitude grid over the area of AMOC calculation south of 
65°N. We convert mass streamfunctions into volume stream-
functions [Sv] using a constant ocean density ρ = 1035 kg m−3, 
a typical value for the upper 3000 m of the ocean (Pawlow-
icz 2013). We define AMOC strength as the maximum of the 
streamfunction between 20° and 65°N, above 3000 m. From 
here on, unless we specifically say so, we are referring to this 
definition. However when assigning model priors, for better 
comparison with observations we use a quantity AMOC26, 
which is the maximum of the Atlantic streamfunction just 
at 26°N, above 3000 m. For the future, we use outputs from 
RCP4.5 and RCP8.5 emissions scenarios (Moss et al. 2010). 
Both AMOC and AMOC26 are drift corrected similarly to the 
AMOC Index. We note that one of the models experiences a 
positive drift of almost 2.5 Sv over the 1850–2100 period (not 
shown), which highlights the importance of drift-correction 

for AMOC and related variables. The future drift-corrected 
AMOC for the two scenarios is shown in Fig. 3.

2.2 � Observations

The demeaned AMOC Index is also calculated for the observa-
tions, for years 1880–2004 (Fig. 2). For the AMOC Index cal-
culations, the “gyre” SSTs come from two sources: ERSSTv4 
dataset (Liu et al. 2014; Huang et al. 2015), and COBE-SST2 
dataset (Hirahara et al. 2013). The ERSSTv4 dataset is on the 
2 × 2° grid, while the COBE-SST2 dataset is interpolated to 
the 2 × 2° grid using bilinear interpolation. Northern Hemi-
sphere temperatures are obtained from the GISTEMP dataset 
(Hansen et al. 2010).

2.3 � Bayesian model averaging and statistical model

Bayesian model averaging (BMA) is a technique to weight 
models and provide weighted probabilistic projections (Hoet-
ing et al. 1999; Raftery et al. 2005; Montgomery and Nyhan 
2010; Bhat et al. 2011; Terando et al. 2012). At the core of 
BMA is a formula for the probability density function (pdf) of 
a projected quantity ∆ from K models given observations D 
and models M1, …, MK.

We use the BMA implementation of Olson et al. (2016) 
with important additions. The original methodology (1) 
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K∑
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does not account for auto-correlation of model-observa-
tional residuals and (2) does not include model/observa-
tional error beyond a simple time-independent bias term. 
We improve on that work by incorporating auto-correlation 
and a more robust representation of model/observational 
error. This requires modifications to our statistical model 
that describes the relationship between model output and 
observations.

Before the BMA, we smooth the historical model 
AMOC Index using robust locally-weighted “lowess” 
regression (Cleveland 1979) in an attempt to remove the 
effects of internal variability. We set the smoother span 
parameter f to 2/3, which appears to remove inter-annual 
and decadal variability but preserves century-scale trends. 
After the smoothing, the data are demeaned to remove any 
biases that are introduced by smoothing (Fig. 2). For the 
future 2060–2099 AMOC we use a different smoothing 
method. Nonlinearities in the time series of just 40 years 
are likely mostly caused by internal variability, hence we 
assume a linear trend and use Theil–Sen slopes (Sen 1968) 
for smoothing. Theil–Sen slopes are less sensitive to outli-
ers than standard linear regression slopes.

Our statistical model for the historical demeaned 
AMOC Index first connects the “best” but imperfect 
smoothed ith model output xi to the observed climate trend 
y (which differs from the actual climate trend due to pres-
ence of long-term observational error, Fig. 2), and then the 
observed trend to observations yʹ [primed quantities refer 
to un-smoothed quantities, all bold quantities are vectors: 
y = (y1, …, yN) where N = 125 is the number of years in 
period 1880–2004]:

Here εD is discrepancy which includes long-term model 
and observational errors, and εNV models short-term inter-
nal variability and observational error. The discrepancy 
εD contains two components: εD,M (model trend error) 
and εD,O (observed trend error). εD,M is a potentially non-
stationary multivariate distribution �D,M ∼ D

(
�D,M,�D,M

)
. 

We do not estimate any parameters of this distribution. 
Rather, we assume that samples from this distribution are 
directly provided by dj, the scaled differences between 
each smoothed model output xj, and the next closest out-
put xk, where k is chosen to minimize the l1 norm of the 
differences xk − xj1. The reasoning for this is as follows. 
Imagine that a particular smoothed model k represents the 
“true” climate trend, and 12 other models are available. If 
we choose the “best” model as the one with the minimal 
l1 difference with the “true” climate, this difference would 
represent model error. Finally, dj also includes a vector of 
zeros, which indicates our prior belief that a model might 

(2)
{

y = xi + �D
y′ = y + �NV

.

not have any structural error. This model error implemen-
tation is inspired by that of Sexton et al. (2011). εD,O is 
difficult to quantify and is likely persistent (Liu et al. 2014, 
our Fig. 2). We assume that it is similar to model error in 
terms of structure and magnitude. This may be a reason-
able assumption, given the two observational trends that 
we consider (Fig. 2). Thus we take discrepancy samples 
(which combine long-term model and observational error) 
as 2dj.

εNV is modeled as an AR(1) process with autocorrelation 
ρ and innovation standard deviation σ. We define parameter 
vector � = (�, �). We use the AR(1) process because it pro-
vides a simple method to account for time dependence. Some 
support for this is provided by the fact that spectra of histori-
cal AMOC Index variability around the long term trends for 
observations and models typically compare well to an AR(1) 
process (Fig. 4).

In this formulation, model weights can be calculated as:

Here, p(Mi) is the climate model prior, discussed in 
Sect. 2.4. The first term under the integral is the likelihood of 
observations given the long-term observed trend. The next two 
terms are the prior for the statistical parameters of the short-
term internal variability/observational error, and the condi-
tional distribution for the long-term observed trend. Thus, the 
overall weight depends on the likelihood of the observations 
given the model, accounting for the uncertainties in proper-
ties of internal variability, and in the long-term observational 
trend. This integral can be approximated by Monte Carlo sam-
pling. Specifically, � and y can be sampled from their prior/
conditional distributions using Monte Carlo, and the integral 
can be calculated as the average of posterior probabilities at 
the sampled values. We use 1,000,000 samples for the Monte 
Carlo sampling.

For the future, we assume that AMOC projections for 
2060–2099 are:

where b(f) is time-independent future model error (bias) and 
�
(f )

NV,i
 is internal variability of the ith model. Our motivation 

for the time-independent error stems from the fact that future 
inter-model AMOC differences are very persistent and can, 
to the first order, be approximated by a constant bias (Fig. 3). 
We assume that b(f ) = b(f )1, a scaled vector of ones of length 
Nf = 40 which is the length of the future period 2060–2099. 
Furthermore, b(f ) ∼ N

(
0, �

(f )

b

)
. �(f )

b
 is obtained as standard 

deviation of period mean of future differences d̄(f )
j

which are 
defined analogously to present-day. As previously (Olson 
et al. 2016), �(f )

NV,i
 is simply resampled using bootstrapping 

(3)p(Mi|y�) ∝ p
(
Mi

)
∬ p

(
y�|y,�,Mi

)
p(�)p(y|Mi)dyd�.

(4)y′(f ) = x
(f )

i
+ b(f ) + �

(f )

NV,i
,
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from the residuals between the raw and the smoothed mod-
els. We use this simple method because these residuals tend 
to be only mildly auto-correlated for both future scenarios 

(not shown). To obtain future AMOC change pdf, we gener-
ate weighted samples for future AMOC using Eqs. (1) and 
(4), and subtract corresponding 1960–1999 modelled 
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Fig. 4   AMOC Index spectra plots for ERSSTv4 observational and 
model residuals from long-term robust locally weighted regression 
trendlines (Cleveland 1979) for the years 1880–2004. Blue lines 90% 

confidence intervals for spectra of AR(1) processes that were fit to 
observed and modeled anomalies, based on 1000 random realizations
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AMOC, with a total number of 100,000 samples. The BMA 
code is reproducible and is available from the authors upon 
request.

2.4 � Model priors

Our method requires a specification of model priors—a 
prior degree of belief in each of the models. We calculate 
the priors based on the models’ representation of historical 
1957–2004 AMOC26 estimates from Bryden et al. (2005), 
corrected for seasonal cycle by Kanzow et al. (2010). To 
this end, we first calculate the ratio of modeled to observed 
AMOC26 for each model i, Si. The prior for the ith model is 
specified as the following function (Olson et al. 2016):

where � =

(
1 + ln

16

9

)/(
1 − ln

9

4

)
, and � =

1

�−1
. This 

ensures that a model that gets AMOC26 perfectly will receive 
the highest prior, while a model that overestimates AMOC26 
by 50% will get down-weighted by a factor of 2 compared 
to the perfect model. Relative model priors are plotted in 
Fig. 5. After the calculation, model priors are re-scaled to 
sum to 1. Most models can capture historical AMOC mag-
nitude relatively well, however, the two Norwegian Climate 
Centre models overestimate it by more than 50%.

Note that recently more continuous AMOC observa-
tions have become available from 2004 onwards as a result 
of the RAPID mooring array project (Cunningham et al. 

(5)p(Mi) = P(Si) = Gamma(�, �),

2007; Srokosz et al. 2012). However, they mostly cover 
the “future” period of the CMIP5 simulations. Thus, to the 
extent the model response differs between the two scenarios, 
using these observations would result in two different sets of 
prior weights. Hence, we refrain from using RAPID obser-
vations at the moment.

For the parameters of the statistical model, we use uni-
form priors for ρ on an interval [0, 1], and for σ on [0, 5]. 
The ρ prior reflects our belief that the sum of short-term 
observational error and model internal variability is posi-
tively autocorrelated. Some support for this is provided by 
higher internal AMOC Index variability at longer time scales 
(Fig. 4).

2.5 � One‑at‑a‑time cross‑validation experiments

To validate our method, we perform one-at-a-time cross-
validation experiments. We assume there are 13 worlds. 
In each of these worlds, one of the models provides “true” 
observations of climate, and “true” future projections. First, 
we use our method to assign weights to all 13 models based 
on their ability to simulate the AMOC and the AMOC 
Index from that model. The model associated with “true” 
observations always receives the highest weight (Fig. 6). 
The AMOC-based prior typically does not vary drastically 
between the models, with an exception of the two right-
most models NorESM1-M and NorESM1-ME. This indi-
cates that information from the AMOC itself provides only 
a weak constraint on model skill for most models. Instead, 
the models are distinguished mostly by their ability to simu-
late the temporal change in the AMOC Index. The large 
variation in posterior weights between models illustrates 
that the method is very powerful at separating “good” and 
“poor” models.

After the weight estimation, the model giving the 
“true” projection is excluded from the analysis. The 
weights from the remaining 12 models are re-scaled to 
sum up to 1. The probabilistic AMOC change projec-
tions between 1960 and 1999 and 2060–2099 from the 
12 remaining models are compared to the “true” projec-
tions in each world (Figs. 7, 8). The “true” projection falls 
outside the 90% credible interval 2 out of 26 times, indi-
cating a reasonable 92% coverage. The pdfs often extend 
considerably beyond the ensemble range, indicating the 
importance of sampling the uncertainty in internal vari-
ability and model error. While the pdfs are usually smooth 
and unimodal, bimodality is evident in some cases. Bimo-
dality is sometimes present in probabilistic climate model 
projections (Tomassini et al. 2007; Olson et al. 2016). 
There are several possible reasons for bimodality. One 
is clustering of model output, in which bimodality may 
already appear before the weighting. Another is due to 
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Fig. 5   AMOC priors. Black line adopted prior form. Colored lines 
the ratios of mean modeled to observed AMOC at 26°N for years 
1957–2004 for the CMIP5 models. Coloring convention the same as 
in Fig. 2
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highly weighted models generating drastically different 
projections (with less likely models in between). This 
kind of bimodality is introduced during the weighting 
procedure. It is possible that both of these reasons con-
tribute to the bimodality seen in our experiments.

2.6 � Real estimation experiments

We conduct four future projection experiments to test 
the sensitivity of our results to methodological choices. 
In the “ERSST” experiment we use ERSSTv4 SST 
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Fig. 7   AMOC change 1960–1999 to 2060–2099 projection pdfs for cross-validation experiments under the RCP8.5 emissions scenario. Red 
dotted lines 90% posterior credible intervals. Thick black lines “true” changes. Circles changes from individual models
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Fig. 8   Same as in Fig. 8, but under the RCP4.5 emissions scenario
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dataset to calculate North Atlantic gyre temperatures used 
for the AMOC Index, and smooth the Index using the low-
ess method. In the “ERSST-LIN” experiment we substitute 
Theil–Sen slopes for lowess smoothing of the modelled 
AMOC Index to generate a trend that does not include non-
linearities in model output with respect to time. The “COBE” 
experiment uses COBE-SST2 SST dataset for the gyre tem-
peratures, and is otherwise identical to the “ERSST” experi-
ment. Finally, we test the sensitivity to the lowess smoother 
span parameter f used during AMOC Index smoothing. In the 
experiment “COBE-F55” we use the COBE-SST2 dataset 
and smooth the modeled AMOC Index output using f = 0.55, 
which produces weaker smoothing. We choose this value, 
because using lower settings does not fully eliminate internal 
variability. Also, when using a higher value of 0.8 we obtain 
similar mean and confidence intervals for the projections 
compared to f = 2/3 (for the ERSSTv4 observations), so we 
do not further report on that experiment here.

3 � Results and discussion

3.1 � The relationship between AMOC Index and AMOC 
strength

We find a moderate positive linear relationship (p 
value = 0.0077) between the century scale AMOC Index 

change and AMOC change in the 13 models (Fig. 9). Mod-
erate correlation also occurs with smoothed output, and 
with an end period of 1965–1984 (not shown). This strongly 
suggests, that on the century scale AMOC changes are an 
important driver of northern North Atlantic SST anoma-
lies with respect to the hemispheric average, through the 
AMOC’s effect on the meridional heat flux.

The models that project a strong decrease in the AMOC 
Index that is within the observed estimates tend to also 
showcase a considerable weakening of the AMOC. One 
model—NorESM1-M—is an exception to this. While pro-
jecting strong AMOC Index decline, it is exhibiting slight 
AMOC strengthening. If the modeled linear relationship 
exists in the real world, the observed relative gyre cooling 
implies that the AMOC has likely already started slowing 
down (Fig. 9). These results are in line with the emerging 
new paradigm that AMOC is likely already responding 
to climate change (Drijfhout et al. 2012; Rahmstorf et al. 
2015).

The linear trendline (Fig. 9) predicts a minor relative gyre 
cooling without any long-term AMOC change. This leaves 
the door open for an additional process for the cooling. This 
is consistent with results of Drijfhout et al. (2012), and Kim 
and An (2013) which suggest that Ekman advection changes 
may play a role. More detailed examination of the driving 
processes is beyond the scope of this paper.

(c)(b)(a)

Fig. 9   a Correlation between AMOC Index change and AMOC 
change between years 1880–1919 and 1985–2004 in CMIP5 models, 
together with a simple linear regression trendline. Color convention 
as in Fig. 2. Solid red and blue lines represent observed AMOC Index 
changes from ERSSTv4 and COBE-SST2 SST datasets, respectively. 

Dotted lines show corresponding expected AMOC changes pro-
jected by the simple linear regression. b Correlation between AMOC 
changes from years 1880–1919 to 1985–2004, and corresponding 
future changes from 1985–2004 to 2080–2099 under the RCP4.5 sce-
nario. c Same as b but under the RCP8.5 scenario
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3.2 � Model weights

Model weights (and priors) are presented in Fig. 10. Gen-
erally, priors have a relatively small spread, with an excep-
tion of the two rightmost models. This indicates that most 
models have similar skill at modeling the absolute value 
of AMOC. However, the posterior weights clearly distin-
guish good from poor models. This indicates that in our 
study model skill at capturing the time evolution of the 
AMOC Index is the key to weighting the models. Spe-
cifically, many models are unable to capture the consider-
able decline in the AMOC Index (Fig. 2). Model AMOC 
errors can be influenced by a variety of sources, such as 
potential errors in the vertical diffusivity parameteriza-
tions (e.g., Goes et al. 2010), the Southern Ocean winds 
(Meijers 2014), as well as the errors more directly related 
to the North Atlantic climate (Zappa et al. 2014; Drews 
and Greatbatch 2016).

Models weights are strongly dependent on the dataset 
used, and are less sensitive to the smoothing method for 
model output. The ERSSTv4 observations show much more 
relative gyre cooling compared to the COBE-SST2 data-
set (Fig. 9). CCSM4 has a strong decreasing AMOC Index 
trend consistent with the ERSSTv4 observations, therefore 
it gets by far the highest weight in the ERSST and ERSST-
LIN experiments. The COBE-SST2 dataset shows consid-
erably smaller decreases (Fig. 9). Two models that fit this 
dataset well are MPI-ESM-LR and CESM1-BGC (Fig. 10), 
although when smaller smoothing is used in the COBE-F55 
experiment, CCSM4 also gets a considerable weight.

3.3 � AMOC change projections

Our future projection pdfs for both scenarios are charac-
terized by smooth, unimodal distributions (Fig. 11). One 
of the reasons for this is the large structural model error 

Fig. 10   Posterior model 
weights for the four experi-
ments. Model indices corre-
spond to Table 1. Horizontal 
grey lines model priors. Color 
scheme as in Fig. 2
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(as well as internal climate variability) that is added onto 
the projections, thereby broadening them. The presence 
of considerable error also explains why the tails of the 
distributions generally go beyond the range of the model 

ensemble. This indicates that bounding future projection 
pdfs to ensemble range can result in overconfidence.

Under the RCP4.5 scenario the AMOC is projected to 
weaken by 4 Sv, with a [−7.2, −1.2] 90% posterior cred-
ible interval (Table 2). Assuming the 1960–1999 mean can 
be well represented by 18.3 Sv (Kanzow et al. 2010), the 
mean decline is −22%, with the 90% interval from −6.6 to 
−39%. The lower bound is somewhat lower than the one 
shown in Schleussner et al. (2014). The projections are 
also lower compared to Bakker et al. (2016). The decrease 
of the lower bound can be attributed to using more models, 
and more thorough sampling of model structural error and 
internal variability. At the same time, as in Bakker et al. 
(2016), given the large model errors and presence of inter-
nal variability, the possibility of intensification cannot be 
completely discounted.

For the RCP8.5 scenario, the projections indicate larger 
declines compared to the RCP4.5 (Tables 2, 3). Under this 
scenario, a mean slowdown of around −6.8 Sv is expected, 
with a 90% posterior credible interval of [−10.5, −3.7] 
Sv. In percentage terms, the mean decline is −37%, with 
the 90% interval from −20 to −57% of the late twentieth 
century values. The effects of decrease by more than a 
half—a distinct possibility—can be extensive enough to 
modulate the annual cycle in the eastern equatorial Pacific 
and to lead to ENSO changes (Timmermann et al. 2007). 
These decreases are much stronger and wider compared to 
Chang et al. (2014) who use an ensemble of Earth model 
of intermediate complexity (EMIC) runs that varies verti-
cal ocean diffusivity. Their analysis shows that increasing 
the dimensionality of the observational constraints from 
1D to 3D mediates the projected AMOC decreases and 
reduces the uncertainty [but see Schmittner et al. (2009) 
for a case when 1D observations can better reduce model 
uncertainties]. However, they use just one EMIC, and the 
projections do not fully include model errors and internal 
variability. Our mean/median projections are in agreement 
with two recent studies (Weaver et al. 2012; Bakker et al. 
2016). However, the median (−6.6 Sv/−36%) appears 
slightly lower than in Schleussner et al. (2014). Also, the 
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Fig. 11   Probabilistic AMOC change projections 1960–1999 to 
2060–2099 [Sv] under RCP8.5 and RCP4.5 emissions scenarios for 
the weighted and un-weighted experiments. Red circles changes from 
individual models

Table 2   Summary of AMOC change projections for 1960–1999 to 
2060–2099 under RCP4.5 emissions scenario

Experiment Mean [Sv] Median [Sv] Mode [Sv] 90% credible 
interval [Sv]

Unweighted −4.9 −4.9 −4.6 −9.1, −1.1
Mean of 

weighted
−4.0 −3.9 −3.7 −7.2, −1.2

ERSST −3.7 −3.5 −3.1 −7.1, −0.87
ERSST-LIN −3.9 −3.8 −3.2 −7.4, −0.97
COBE −4.3 −4.3 −4.2 −7.2, −1.5
COBE-F55 −4.2 −4.1 −4.1 −7.2, −1.2

Table 3   Summary of AMOC change projections for 1960–1999 to 
2060–2099 under RCP8.5 emissions scenario

Experiment Mean [Sv] Median [Sv] Mode [Sv] 90% credible 
interval [Sv]

Unweighted −7.2 −7.4 −8.7 −11.3, −2.8
Mean of 

weighted
−6.8 −6.6 −6.2 −10.5, −3.7

ERSST −6.6 −6.3 −5.9 −10.5, −3.8
ERSST-LIN −6.9 −6.5 −5.9 −10.7, −3.8
COBE −6.9 −6.8 −6.6 −10.3, −3.7
COBE-F55 −6.8 −6.7 −6.5 −10.4, −3.6
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upper bound of the 90% credible interval is lower than in 
previous studies (Schleussner et al. 2014; Bakker et al. 
2016). Thus, the weighting cuts the upper tail of the pro-
jections (Fig. 11). It is difficult to compare our projections 
with other studies due to use of different forcing scenarios. 
Defining AMOC collapse as attaining a 0 Sv circulation (a 
decline of 18.3 Sv from present; Urban and Keller 2010; 
Bakker et al. 2016), we do not have any future projection 
samples showing a collapse. Same result is obtained when 
redefining it as a decline of more than 90% (or 16.5 Sv) 
from present-day climatology (Zickfeld et al. 2007). How-
ever, using <5 Sv (severely reduced circulation with a 
strength of about a quarter of present-day value) results 
in a collapse probability of 4.8 × 10−4. To calculate this 
probability, we pool all posterior samples from the four 
RCP8.5 weighted experiments together. In light of poor 
knowledge of the model structural errors, we assess the 
collapse as exceptionally unlikely over the twenty-first 
century, where “exceptionally unlikely” is used in accord-
ance with the Intergovernmental Panel on Climate Change 
(IPCC) guidance for treatment of uncertainty (Mastrandrea 
et al. 2010). This assessment is in agreement with previous 
work (Bakker et al. 2016).

Comparing weighted with un-weighted distributions 
illustrates the sharpening of the pdfs when the new infor-
mation from observations is taken into account (Fig. 11; 
Tables 2, 3). There is a strong shift of the mode of the 
changes from −8.7 Sv for the unweighted RCP8.5 case to 
−6.2 Sv for the mean of the weighted cases. Also, cutting 
off of the high-impact low tail is a very robust feature and 
illustrates the advantages of the weighting. This is especially 
prominent in the RCP4.5 case: the low bound of the 90% 
credible interval shrinks by almost 2 Sv after the weighting. 
Moreover, the central tendencies of the weighted changes are 
considerably higher. Specifically, for RCP4.5 both mean and 
median projections are around 1 Sv higher than in the un-
weighted case. To analyze this behavior, we correlate past 
century-scale modeled AMOC changes with future changes 
(Fig. 9). Perhaps surprisingly, the models that project larger 
past declines in AMOC tend to project smaller future slow-
down. The correlation is moderate in the RCP4.5 case, and 
weak in the RCP8.5 case. We test the sensitivity of the cor-
relations to some assumptions. When we use 1965–1984 and 
2060–2079 period for the recent past and the future respec-
tively, the RCP4.5 correlation remains the same at −0.7, 
while the RCP8.5 correlation increases to −0.56 (moderate 
correlation). Finally, moderate and weak negative correla-
tions for the RCP4.5 and RCP8.5 respectively remain after 
smoothing model output. The reason for such behavior is 
the subject of future work. Overall, the models that cor-
rectly capture the strong relative gyre cooling tend to exhibit 
stronger past AMOC declines, and those are the models that 
tend to produce smaller future declines. We also stress that 

the magnitude of the century scale model decline may not 
provide the whole story—the shape of the time-series may 
also be important for providing model weights. The relation-
ships between past and future long term AMOC trends in 
the models, as well as the strong constraint provided by the 
time-resolved AMOC proxy, underscore the importance of 
continuous North Atlantic monitoring projects like RAPID 
(Smeed et al. 2014).

Finally, our results are not very sensitive to the choice 
of gyre SST temperature dataset, or the smoothing method 
(Fig.  11). Using ERSSTv4 observations, which exhibit 
stronger relative gyre cooling, we find somewhat weaker 
future declines. This is consistent with the correlation rela-
tionships described above.

4 � Caveats

Our study is subject to several caveats. First, we use only a 
subset of available models, and just two observational data-
sets. Second, our observation system simulation experiment 
set-up is highly simplified and does not account for model 
errors that are common to all models. Third, we do not fully 
explore key parametric uncertainties, specifically in climate 
sensitivity (Stocker and Schmittner 1997; e.g.; Forest et al. 
2006; Libardoni and Forest 2011; Olson et al. 2012). Stocker 
and Schmittner (1997) showed the paramount effect of cli-
mate sensitivity on the potential for future AMOC collapse 
using an EMIC. Fourth, we parameterize future structural 
model bias using a normal distribution. Quantifying model 
errors is an ongoing research area (Sexton et al. 2011), and 
in reality the error could follow a different distribution. 
Fifth, CMIP5 models used here do not include dynamic 
ice sheet models. This likely leads to underestimation of 
AMOC slowdown, depending in magnitude on the rate of 
future Greenland ice loss. There is considerable uncertainty 
both regarding this future mass loss and the sensitivity of 
the AMOC to freshwater input (Stouffer et al. 2006; Gierz 
et al. 2015; Bakker et al. 2016; Böning et al. 2016; Kandiano 
et al. 2016).

An important caveat concerns the possible abrupt 
response of the AMOC, related to its Stommel bifurcation 
point (Stommel 1961). AMOC stability (the existence of 
one or multiple equilibria under a given freshwater forc-
ing) appears to be related to Fov, the freshwater transport 
by the AMOC into the Atlantic basin across approximately 
30–35°S (Alley 2007; Huisman et al. 2010; Hawkins et al. 
2011; Srokosz et al. 2012). The proximity of the AMOC 
bifurcation threshold (if it exists) is only very poorly known 
and, due to high computational cost, has thus far been sys-
tematically investigated mostly in intermediate complex-
ity models (Rahmstorf et al. 2005). However, a number of 
recent studies point to a bias of some current climate models 
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towards stable conditions too far away from this potential 
threshold (Hofmann and Rahmstorf 2009; Huisman et al. 
2010; Weaver et al. 2012; Liu and Liu 2014). Here, out of 
the two models that get the highest weight in our experi-
ments (CCSM4 and MPI-ESM-LR), CCSM4 operates in a 
monostable regime (for the RCP4.5 scenario), while MPI-
ESM-LR has a bistable regime during the experiments and 
time periods considered (Weaver et al. 2012). Observations 
suggest a bistable regime (e.g., Huisman et al. 2010; Bryden 
et al. 2011). Thus, including AMOC stability or other physi-
cal AMOC-related variables such as freshwater fluxes (Kim 
and An 2013) into model weighing is the subject of future 
research.

Finally, we do not explicitly include any paleo-constraints 
on our models. Since abrupt AMOC-related changes are 
believed to have occurred in the past (Broecker 1997; Alley 
2007; Negre et al. 2010; Stone et al. 2016), such constraints 
have the potential to shed new light onto future projections.

5 � Conclusions

We weight 13 CMIP5 models by their skill at modeling late 
twentieth century Atlantic Meridional Overturning Circula-
tion (AMOC), and the temporal evolution of a sea-surface 
temperature based AMOC Index for the years from 1880 
to 2004. We show that century-scale changes in this Index 
are related to AMOC changes in the models. We use these 
weights to make probabilistic projections of AMOC change 
between the years 1960–1999 and 2060–2099. We improve 
on previous work through the use of time-dependent obser-
vational constraints, addition of drift-correction, as well as 
extensive implementation of model error, and internal vari-
ability. Furthermore, we achieve an approximately correct 
projection coverage during cross-validation.

Models consistent with observed AMOC Index decreases 
tend to project AMOC weakening over last century. Thus, 
our results are consistent with the emerging line of thought 
that AMOC has likely already started slowing down.

Time series of the AMOC Index provides a powerful 
constraint that separates the poor from the good models. 
Weighting the models considerably sharpens and moder-
ates future AMOC change projections, while strongly reduc-
ing the high-impact low tails, compared to the un-weighted 
results.

Despite the sharpening after the weighting, the projec-
tions are at the low end of previously published estimates. 
This is the joint effect of using more models, and of more 
thoroughly accounting for internal variability, model and 
observational errors. The mean declines between 1960 and 
1999 and 2060–2099 are 4.0 and 6.8 Sv, respectively, under 
the RCP4.5 and RCP8.5 scenarios. Under the RCP8.5 sce-
nario, the emerging picture is that of near-certainty in the 

AMOC weakening, with a distinct possibility of over 50% 
slowdown by the end of the century. At the same time, we 
find that, given the caveats of this study, a chance of AMOC 
collapse is exceptionally unlikely. However, previous work 
indicates that the probability of triggering a collapse beyond 
the twenty-first century (e.g., committing to a future col-
lapse) might be orders of magnitude higher than the prob-
ability of actually experiencing a collapse (Urban and Kel-
ler 2010). Further work includes improving the statistical 
method and the cross-validation, the choice and dimension-
ality of the observational constraints, as well as enlarging 
model ensembles and/or complementing them with per-
turbed parameter ensembles.
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